Chapter 5

Section 5.4-5.5

Main Topic \# 1: [The other Trig functions] There are other Trig functions that will be important, here is a concise list of them

The Other Trig Functions
For any angle θ we have the following:

$$
\begin{aligned}
\tan (\theta) & =\frac{\sin (\theta)}{\cos (\theta)} \\
\cot (\theta) & =\frac{\cos (\theta)}{\sin (\theta)} \\
\sec (\theta) & =\frac{1}{\cos (\theta)} \\
\csc (\theta) & =\frac{1}{\sin (\theta)}
\end{aligned}
$$

These functions have the trouble that they each have vertical asymptotes.

Let's look at $\tan (\theta)$ and $\sec (\theta)$ these both have $\cos (\theta)$ in the denominator, and hence have vertical asymptotes when every $\cos (\theta)=0$.

The vertical asymptotes of both $\tan (\theta)$ and $\sec (\theta)$ are when

$\cos (\theta)=0$

$$
\cos (\theta)=0
$$

when

Now we can graph

$$
(0,-1)
$$

$$
\theta=\frac{\pi}{2}+n \pi=\frac{(2 n+1) \pi}{2}
$$

The Graphs of $\tan (\theta)$ and $\sec (\theta)$

To graph these it will be helpful to know the zeros of the functions. First, $\tan (\theta)=0$ when $\sin (\theta)=0$ which is at $\theta=n \pi$ for any integer n. Yet as 1 is in the numerator of $\sec (\theta)$ it can never be zero. Cseerext page

With these graphs we see a few things:
(i) Domain: $\tan (\theta): \theta \neq \frac{(2 n+1) \pi}{2}$
$\sec (\theta): \theta \neq \frac{(2 n+1) \pi}{2}=\frac{\pi}{2}+n \pi$
(ii) Range: $\tan (\theta):(-\infty, \infty)$
$\sec (\theta):(-\infty,-1] \cup[1, \infty)$
(iii) Period: $\tan (\theta): \pi$
$\sec (\theta): 2 \pi$
Next let's look at $\cot (\theta)$ and $\csc (\theta)$ these both have $\sin (\theta)$ in the denominator, and hence have vertical asymptotes when every $\sin (\theta)=0$.

Vertical Asymptotes of $\cot (\theta)$ and $\csc (\theta)$
The vertical asymptotes of both $\cot (\theta)$ and $\csc (\theta)$ are when

Now we can graph

The Graphs of $\cot (\theta)$ and $\csc (\theta)$

To graph these it will be helpful to know the zeros of the functions. First, $\cot (\theta)=0$ when $\cos (\theta)=0$ which is at $\theta=\frac{(2 n+1) \pi}{2}$ for any integer n. Yet as 1 is in the numerator of $\csc (\theta)$ it can never be zero.

(a) π
(b) $\pi / 4$ $\sin (\pi)=0$ $\cos (\pi)=-1$
$\operatorname{Tan}(\pi)=0$
$\operatorname{Cot}(\pi)=$ DNE
$\sec (T)=-1$
$\csc (T)=\operatorname{DNE}$
$\csc (\theta): \quad \theta \neq n \pi$
$\csc (\theta):(-\infty,-1] \cup[1, \infty)$
$\csc (\theta): 2 \pi$

Learning Outcome \# 1: [Using the Unit Circle to Calculate Trig Functions]
Problem 1. Find the value of all 6 trigonometric functions for the following angles:

Main Topic \# 2: [ArcSine and ArcCosine]

We would like to solve equations like: $\sin (x)=\frac{\sqrt{3}}{2} \quad \mathrm{x}=\arcsin \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{3}$
We saw in the section about Logs that this is achieved by the inverse of the function. Yet unlike the situation with Log, we have the problem that the inverse of $\sin (x)$ and $\cos (x)$ are not functions!

Just like \sqrt{x} to have a useful inverse we will need to find out a useful restriction for the domains of $\sin (x)$ and $\cos (x)$.

Restricting the Domains of $\sin (x)$ and $\cos (x)$

We want to find a restriction of the domains of $\sin (\boldsymbol{\theta})$ and $\cos (\boldsymbol{\theta})$, so that we can solve equations like the one above we will need this restricted domain to satisfy some useful properties
(i) Need a $\boldsymbol{\theta}$ so that for every y between -1 and 1 we have that $\sin (\boldsymbol{\theta})=y(\operatorname{or} \cos (\boldsymbol{\theta})=y)$
(ii) Only want a domain so that when $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{2}$ are in the domain then $\sin \left(\boldsymbol{\theta}_{1}\right) \neq \sin \left(\boldsymbol{\theta}_{2}\right)$ (or $\left.\cos \left(\boldsymbol{\theta}_{1}\right) \neq \cos \left(\boldsymbol{\theta}_{2}\right)\right)$

We now will write the $\arcsin (y)$ for the inverse of $\sin (x)$ on the domain above and the $\arccos (y)$ for the inverse of $\cos (x)$ on the domain above.

From this we have the following:
(i) Domain: $\arcsin (y):[-1,1]$

$$
\arccos (y):[-1,1]
$$

(ii) Range: $\arcsin (y):\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\arccos (y):[0, \pi]$
Learning Outcome \# 2: [Using the unit circle to calculate $\arcsin (y)$ and $\arccos (y)$]
Problem 2. Find $\arcsin (y)$ and $\arccos (y)$ for the following values:

